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Abstract
The spectra of previously constructed auxiliary matrices for the six-vertex
model at roots of unity are investigated for spin-chains of even and odd length.
The two cases show remarkable differences. In particular, it is shown that
for even roots of unity and an odd number of sites the eigenvalues contain
two linear independent solutions to Baxter’s TQ-equation corresponding to the
Bethe ansatz equations above and below the equator. In contrast, one finds for
even spin-chains only one linear independent solution and complete strings.
The other main result is the proof of a previous conjecture on the degeneracies
of the six-vertex model at roots of unity. The proof rests on the derivation of
a functional equation for the auxiliary matrices which is closely related to a
functional equation for the eight-vertex model conjectured by Fabricius and
McCoy.

PACS numbers: 05.50.+q, 02.20.Uw, 02.30.Ik

1. Introduction

Baxter’s TQ-equation [1] is one of the cornerstones of integrable systems and has been
discussed in a variety of contexts. While it originated from the Bethe ansatz computations for
the six-vertex model, it provides conceptually a more general framework to solve the transfer
matrix eigenvalue problem of integrable vertex models and paved the way for the solution of
the eight-vertex model [2, 3]. (See also [4, 5] for recent developments.)

In the TQ-equation the T symbolizes the transfer matrix of the integrable model at hand
and Q is called the auxiliary matrix in terms of which the transfer matrix can be expressed.
To be concrete, consider the six-vertex model on a square-lattice with periodic boundary
conditions. Then the TQ-equation is a second-order linear difference equation of the form

T (z)Q(z) = φ(zq−2)Q(zq2) + φ(z)Q(zq−2) (1)

with z ∈ C being the spectral variable and q the coupling (or crossing) parameter of the model.
The coefficients φ are given by some known scalar function, which in our convention specified
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below will be φ(z) = (zq2 − 1)M . Here M is the number of lattice columns. This equation
is often treated on different levels. Some authors interpret it merely on the level of complex-
valued functions, i.e., for the eigenvalues of the respective matrices only, not addressing the
usually harder problem of the explicit construction of the matrix Q. Solving this construction
problem, however, allows one to address the problem of determining the existence and number
of possible solutions to the TQ-equation. This is particularly important for those cases which
one often finds to be explicitly (or implicitly) excluded from the discussion, for instance when
the parameter q is a root of unity or when the length of the spin-chain associated with the
vertex model is odd.

For these ‘special’ cases the relation between the spectrum of explicitly constructed
Q-matrices in [6–8] and the solutions of the TQ-equation will be our primary interest in this
paper. For our discussion it will be important to distinguish between the TQ-equation as a
functional relation and an operator equation.

1.1. The TQ-equation in terms of functions

In [9] Krichever et al pointed out that Baxter’s TQ-equation naturally appears as an auxiliary
linear problem in the context of the discretized Liouville equation, see section 4 therein. For
the six-vertex model the analogue of this equation arises from the fusion hierarchy [10, 11],

T (n)(zq2)T (n)(z) − T (n+1)(z)T (n−1)(zq2) = φ(z)φ(zq2n). (2)

Here, the T (n)s should be thought of as the eigenvalues of the six-vertex fusion matrix of spin
n/2 with T (2) = T being the transfer matrix and T (1) = φ the quantum determinant [12]. We
will give the definition of the six-vertex fusion hierarchy below. The general exposition given
in [9] (which also addresses the case of higher rank and elliptic functions) concludes that there
will be in general two linear independent solutions, say Q±, to the functional equation (1)
which satisfy the Wronskian

Q+(zq2)Q−(z) − Q+(z)Q−(zq2) = φ(z). (3)

From this Wronskian two types of ‘complementary’ Bethe ansatz equations can be deduced
[9]. Note that after equation (4.27) in [9] the restriction to elliptic polynomials φ of even degree
is made which corresponds to the case of spin-chains of even length. While the focus in [9]
is mainly on the elliptic case, one wonders about the trigonometric limit and the implications
for the six-vertex model.

Pronko and Stroganov investigated this question of two potential linear independent
solutions of the six-vertex TQ-equation in [13]. Starting with the XXX spin-chain their
discussion is generalized to the XXZ spin-chain excluding the root of unity case. They
identify for spin-chains with an odd number of sites M one solution, say Q+, as the familiar
solution from the Bethe ansatz, while the second solution Q− is associated with solving the
Bethe ansatz on the ‘wrong side of the equator’ meaning that it incorporates M − n Bethe
roots. Here, 0 � n � M/2 is the number of down-spins in the corresponding eigenstate of
the transfer matrix or spin-chain Hamiltonian. For spin-chains with an even number of sites,
however, there is only one analytic solution in the case of periodic boundary conditions1.
Baxter addresses this phenomenon on the basis of the coordinate Bethe ansatz and numerical
computations in [14] stating that the missing Bethe roots for the second solution Q− have gone
off to infinity. (See also the third paragraph after equation (4.43) in [9].) When a nonzero
horizontal electric field is applied, numerical computations show both linear independent
solutions exist for M even and odd [14].
1 In [13] it was pointed out that the second solution contains a non-periodic, linear term (ln z in our conventions) for
even chains. We shall always exclude such solutions and assume Q to be polynomial in z.
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The difference between spin-chains of odd and even length has been further underlined
in [15]. For the special root of unity case q3 = 1 and spin-chains with an odd number of sites
the two independent solutions of the six-vertex TQ-equation have been explicitly constructed
[15] starting from a conjecture on the particularly simple form of the ground state [16–18].

Our discussion in this paper will show that the solutions obtained at q3 = 1 in [15] are
in fact the only linear independent solutions in the spin Sz = ±1/2 sector which possess
the expected number of (M − 1)/2 and (M + 1)/2 Bethe roots, respectively. This is due to
the large degeneracies in the spectrum of the transfer matrix connected with the loop algebra
symmetry of the six-vertex model at roots of unity [19]. A similar reduction in the number of
solutions takes place at higher roots of unity as well. In other words, the number and nature
of solutions to the TQ-equation (1) does also crucially depend on the value of the parameter q
and not only on the length of the spin-chain.

The various cases outlined and the necessary distinctions one has to make clearly show the
importance of the explicit construction of auxiliary matrices in order to obtain better control
over the different scenarios. However, Baxter’s construction of auxiliary matrices for the six-
and eight-vertex model as presented in his book [20] applies only to spin-chains of even length
(see the comment after equation (9.8.16)) and also at roots of unity can only be extended to
a particular subset of cases. In contrast, the auxiliary matrices constructed in [6] for roots of
unity qN = 1 and the ones in [24] for the case of ‘generic’ q do not have such limitations
and apply for even as well as odd length of the chain. They are also of a simpler algebraic
form. In this work we will explicitly relate those auxiliary matrices’ spectrum to the two linear
independent solutions of the TQ-equation by extending the discussion of [7] from the even to
the odd case.

1.2. The TQ-equation in terms of operators

Starting with the papers [21, 22] on the Liouville model and subsequent papers on the six-vertex
model [6, 23, 24] a new approach to construct auxiliary matrices has been developed which
relies on representation theory. (See also [25] for an earlier construction at roots of unity and
[6] for its relation with the current approach.) In this method one first solves the Yang–Baxter
equation to obtain a matrix which commutes with the transfer matrix and afterwards derives the
TQ-equation by investigating the decomposition of certain tensor products of representations.
The novel feature [24, 6] in this context is the appearance of additional free parameters,
collectively called p, in the auxiliary matrix, i.e., Q = Q(z;p). These free parameters shift
in the operator solution of the TQ-equation [6, 24],

T (z)Q(z;p) = φ(zq−2)Q(zq2;p′) + φ(z)Q(zq−2;p′′). (4)

Thus, in this construction method one has to consider a generalized version of Baxter’s
TQ-equation at the level of operators. The free parameters are, for instance, necessary to
break spin-reversal symmetry or to lift the degeneracies of the transfer matrix at roots of unity
[6]. They also contain information on the analytic structure of the eigenvalues of the auxiliary
matrices [7, 8].

For the case when q is not a root of unity and twisted boundary conditions the spectra
of the auxiliary matrices constructed in [24] have been computed using the algebraic Bethe
ansatz [8]. It was found that the eigenvalues decompose into two parts which are related by
spin reversal [8],

Q(z;p) = Q+(z;p)Q−(z;p). (5)

For special choices of the parameters p the functions Q± are the eigenvalues of the lattice
analogues of the Q-operators constructed by Bazhanov et al for the Liouville model [21, 22].
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For twisted boundary conditions these two parts of the eigenvalue (5) can indeed be identified
(up to some normalization constants) with the two linear independent solutions Q± of the
TQ-equation discussed in the previous section, see [8] and the conclusions of this paper.
However, in general this is not true, since the two linear independent solutions Q± might not
always exist, as for example in the case of periodic boundary conditions and spin-chains of
even length. Note also that Baxter’s Q-operator for even spin-chains corresponds to only one
of these eigenvalue parts, say Q+. This should make clear that the Q-operators in [6, 24]
not only differ in the construction procedure but are quite different objects from Baxter’s Q
discussed in [20].

1.3. Outline and results of this paper

The outline of the paper is as follows:

Section 2. We introduce the fusion hierarchy of the six-vertex model and fix our conventions.
The fusion matrices are defined such that they are polynomials of maximal degree M in the
spectral variable z. Here, M is the length of the associated XXZ spin-chain.

Section 3. We recall the definition of a particular subset of the auxiliary matrices at roots of
unity constructed in [6] and discuss the general form of their spectra defining the subparts Q±

of the eigenvalue decomposition (5). Preliminary results have already been obtained in [7] for
the case of spin-chains with M even. Additional results for M even and odd are contained in
[8]. In this paper we will complete our investigation of the spectra by extending the discussion
of [7] to spin-chains with an odd number of sites.

Section 4. The eigenvalues of the auxiliary matrices are in general polynomials in the spectral
variable. In this section we determine when they have maximal degree and when they vanish
at the origin. Both facts are related to the absence or occurrence of infinite Bethe roots.

Section 5. We review from [7] the discussion of the TQ-equation in terms of the eigenvalues
of the auxiliary matrices. In particular, we discuss the transformation under spin reversal and
show how the second linear independent solution to the TQ-equation arises.

Section 6. One of the main results of this paper is the derivation of a functional
equation, for M even and odd, that proves a previously formulated conjecture in [7], see
equations (18) and (19) therein. This result will enable us to determine the level of degeneracy
of the eigenvalues of the transfer matrix at roots of unity and relate the two parts Q± of the
eigenvalues via an inversion formula. Moreover, this result can be considered as a six-vertex
analogue of the eight-vertex functional equation conjectured by Fabricius and McCoy in [4,
5]. We will comment on this in the conclusions.

Section 7. The results for the case of odd spin-chains will show that for even roots of unity
and periodic boundary conditions we obtain both linear independent solutions Q± of the
TQ-equation from the auxiliary matrices in [6]. This is a constructive existence proof for
these solutions. For odd roots of unity we will see that the eigenstates of the transfer matrix
associated with Q± (in the case that both solutions exist) correspond to zero eigenvalues of
the auxiliary matrices. We in particular make contact with Stroganov’s solutions for N = 3
[15] and show that they are the only ones with the expected number of Bethe roots (see also
appendix B).

Section 8. We state our conclusions and relate our results to the case when q is not a root of
unity considered in [8] and the recent developments in the eight-vertex model [4, 5].
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2. The six-vertex fusion hierarchy

We introduce the six-vertex model from a representation theoretic point of view. Denote
by π(n)

z : Uq(s̃l2) → End C
n+1 the spin n/2 evaluation representation of the quantum loop

algebra, i.e.,

π(n)
z (e1)|m〉 = [n − m + 1]q |m − 1〉, π(n)

z (f0) = z−1π(n)
z (e1),

π(n)
z (f1)|m〉 = [m + 1]q |m + 1〉, π(n)

z (e0) = zπ(n)
z (f1),

π(n)
z (qh1)|m〉 = qn−2m|m〉, π(n)

z (qh0) = π(n)
z (q−h1),

(6)

with m = 0, 1, . . . , n. Define the fusion matrix of degree n + 1 by setting

T (n+1)(zq−n−1) = Tr
0

L
(n+1)
0M (zqn+1) · · · L(n+1)

01 (zq−n−1) (7)

where L(n+1) is the intertwiner with respect to the tensor product π(n)
w ⊗ π

(1)
1 ,

〈0|L(n+1)(w)|0〉 = wqπ(n)(qh1/2) − π(n)(q−h1/2),

〈0|L(n+1)(w)|1〉 = wq(q − q−1)π(n)(qh1/2)π(n)(f1),

〈1|L(n+1)(w)|0〉 = (q − q−1)π(n)(e1)π
(n)(q−h1/2),

〈1|L(n+1)(w)|1〉 = wqπ(n)(q−h1/2) − π(n)(qh1/2).

(8)

Here the scalar products are taken in the second factor of the tensor product, i.e., the spin 1/2
representation. The fusion matrices satisfy the functional equation [10]

T (n)(z)T (2)(zq−2) = (zq2 − 1)MT (n+1)(zq−2) + (z − 1)MT (n−1)(zq2). (9)

The fusion hierarchy contains two special elements from which all others can be successively
generated, namely, the six-vertex transfer matrix2 T and the quantum determinant T (1) [12]
which are obtained via the identification

T (2)(zq−2) ≡ T (z) and T (1)(z) ≡ (zq2 − 1)M. (10)

In this manner the above functional equation may also serve as a defining relation for the fusion
matrices. An alternative form of the fusion hierarchy is the one given in the introduction,
see (2). Both versions are equivalent. From the transfer matrix T we obtain as logarithmic
derivative the XXZ spin-chain Hamiltonian,

HXXZ = −(q − q−1) z
d

dz
ln

T (z)

(zq2 − 1)M

∣∣∣∣
z=1

(11)

= −1

2

M∑
m=1

{
σx

mσ x
m+1 + σy

mσ
y

m+1 +
q + q−1

2

(
σ z

mσ z
m+1 − 1

)}
. (12)

The well-known symmetries of the model are expressed in terms of the following commutators:

[T (m)(z), T (n)(w)] = [T (n)(z), Sz] = [T (n)(z),R] = [T (n)(z),S] = 0, (13)

where the respective operators are defined as

Sz = 1

2

M∑
m=1

σ z
m, R = σx ⊗ · · · ⊗ σx =

M∏
m=1

σx
m, S = σ z ⊗ · · · ⊗ σ z =

M∏
m=1

σ z
m.

(14)

These symmetries hold for spin-chains of even as well as odd length.

2 Note that our definition of the six-vertex transfer matrix differs from the one in [6–8] by an overall factor,

T (z) → q
M
2 T (z)/(zq2 − 1)M .
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3. Auxiliary matrices at roots of unity

In a series of papers [6–8] auxiliary matrices for the six-vertex model at roots of unity have
been constructed. The construction procedure and the difference with Baxter’s method have
been discussed in [6] and we refer the reader to this work for details. In order to keep this
paper self-contained we briefly give the definition of a special subvariety of the set of auxiliary
matrices constructed in [6].

3.1. Definition

Suppose q is a primitive root of unity of order N and set N ′ = N if the order is odd
and N ′ = N/2 if it is even. Define the following N ′-dimensional nilpotent evaluation
representation πµ

w of the quantum loop algebra Uq(s̃l2) [26, 27],

πµ(qh1)|n〉 = µ−1q−2n−1|n〉, πµ(f1)|n〉 = |n + 1〉, πµ(f1)|N ′ − 1〉 = 0,

πµ(e1)|n〉 = µ + µ−1 − µq2n − µ−1q−2n

(q − q−1)2
|n − 1〉,

(15)

and

πµ
w(qh0) = πµ(q−h1), πµ

w(f0) = w−1πµ(e1),

πµ
w(e0) = wπµ(f1), w,µ ∈ C

×.
(16)

Let the matrix

Lµ =
(

αµ βµ

γµ δµ

)
= αµ ⊗ σ +σ− + βµ ⊗ σ + + γµ ⊗ σ− + δµ ⊗ σ−σ + (17)

be the intertwiner of the tensor product πµ
w ⊗ π

(1)
z=1 of evaluation representations, explicitly

αµ(w) = wqπµ(qh1/2) − πµ(q−h1/2), βµ(w) = wq(q − q−1)πµ(qh1/2)πµ(f1),

γµ = (q − q−1)πµ(e1)π
µ(q−h1/2), δµ(w) = wqπµ(q−h1/2) − πµ(qh1/2).

(18)

Define the auxiliary matrix in terms of these matrices as the trace of the following operator
product:

Qµ(z) = Tr
0

L
µ

0M(z/µ)L
µ

0M−1(z/µ) · · · Lµ

01(z/µ). (19)

This matrix commutes by construction with the fusion matrices,

[Qµ(w), T (n)(z)] = 0, (20)

and preserves two of the symmetries (13) [6, 7],

[Qµ(z), Sz] = [Qµ(z),S] = 0. (21)

Spin-reversal symmetry on the other hand is broken [6, 7],

RQµ(z, q)R = Qµ−1(zµ−2, q) = Qµ−1(zq2µ−2, q−1)t = (−zq/µ)MQµ(z−1q−2µ2, q)t .

(22)

These relations hold for all M and allow one to determine the conjugate transpose of the
auxiliary matrix [7],

Qµ(z, q)∗ = Qµ̄(z̄, q−1)t = Qµ̄(z̄q−2, q). (23)

In addition, one derives from the following non-split exact sequence of evaluation
representations πµ

w [6]:

0 → π
µq

w′ ↪→ πµ
w ⊗ π(1)

z → π
µq−1

w′′ → 0, w = w′q−1 = w′′q = z/µ (24)
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the TQ-equation

T (z)Qµ(z) = (z − 1)MQµq(zq
2) + (zq2 − 1)MQµq−1(zq−2). (25)

The proof can be found in [6], here we will only review parts of the calculation of the spectrum
of the auxiliary matrices given in [7] and extend the results therein to spin-chains of odd length.

3.2. The general form of the spectrum

The starting point is the same as in [7]: provided that the commutation relation

[Qµ(z),Qν(w)] = 0, µ, ν, z,w ∈ C (26)

holds, the eigenvectors of Qµ(z) are independent of the parameter µ as well as the spectral
variable z. In order to prove (26) one has to explicitly construct the corresponding intertwiners
of the tensor products πµ

w ⊗ πν
1 for all N ′ ∈ N. As pointed out in [7] the necessary conditions

for these intertwiners to exist are satisfied for all roots of unity. An explicit construction has
been carried out for N = 3 [7] and N = 6. Numerical checks have been performed for
N ′ = 4, 5, 7. We shall take this as sufficient evidence for (26) to hold true.

There are two important implications of (26). The first is that the auxiliary matrices are
normal and hence diagonalizable, see (23). The second consequence is that the eigenvalues
of Qµ must be polynomial in the spectral variable z. Their most general form is therefore
given by3

Qµ(z) = Nµzn∞PB(z)Pµ(z)PS(z
N ′

, µ2N ′
)

= Nµzn∞
n+∏
i=1

(1 − z/zi)

n−∏
i=1

(1 − z/wi(µ))

nS∏
i=1

(1 − zN ′
/ai(µ)). (27)

Note that we slightly differ in the notation from [7] and have redefined the normalization
constant Nµ by setting PB(0) = Pµ(0) = PS(0) = 1. Besides these minor differences our
definition of the various polynomials entering the eigenvalues is the same as in [7].

• The monomial factor in front of the eigenvalue is related to the occurrence of vanishing
and infinite Bethe roots when the root of unity limit is taken in the deformation
parameter q.

• The second factor PB contains only roots zi which do not depend on the free parameter
µ and which will be identified with the finite Bethe roots at roots of unity. Moreover,
we exclude from this set complete or exact strings, i.e., for every zi there is at least one
integer 0 < 
 < N ′ such that ziq

2
 is not a root of PB .
• The third factor contains roots which do depend on the parameter µ. For even chains,

M ∈ 2N, this factor was identified in [7] with the rescaled polynomial PB,

Pµ(z) = PB(zµ−2).

Here, we will find that this relation ceases to be valid for even roots of unity when
M ∈ 2N + 1. Again we exclude the possibility that the roots of Pµ occur in strings.

• Finally, the last factor PS contains all roots which occur in strings. The zeros ai may or
may not depend on the parameter µ. Because all roots are sitting in a string the polynomial
depends on zN ′

rather than z. Note that we allow for the possibility nS = 0.

3 Throughout this paper we will denote eigenvalues and operators by the same symbol.
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For later purposes let us decompose the eigenvalues of the auxiliary matrices into two parts
similar as it has been done in [22, 8] for q ‘generic’. Namely, we set

Q+(z) = PB(z) =
n+∏
i=1

(1 − z/zi) (28)

and secondly,

Q−(z) = lim
µ→q−N ′

Nµzn∞Pµ(z)PS(z
N ′

, µ2N ′
). (29)

This decomposition may seem arbitrary at the moment but it will become clear in our line of
argument. Note that we have eliminated the dependence of the auxiliary matrix on the free
parameter µ in (29). Moreover, it is worth stressing that Q± are not always both identical with
the two linear independent solutions Q± of the TQ-equation (the latter might even not exist),

T (z) ≡ T (2)(zq−2) = (zq2 − 1)Mq∓Sz Q±(zq−2)

Q±(z)
+ (z − 1)Mq±Sz Q±(zq2)

Q±(z)
(30)

which satisfy the Wronskian

qSzQ+(zq2)Q−(z) − q−SzQ+(z)Q−(zq2) = (
qSz − q−Sz)

(1 − zq2)M. (31)

The additional phase factors q±Sz

in comparison with equation (3) of [9] discussed in the
introduction are due to different conventions. We shall set Q+(0) = Q−(0) = 1 and degQ+ =
M − degQ− = M/2 − Sz. While Q+ is by definition the solution Q+ above the equator,
Q− �= Q− in general. In particular, we have included the normalization constant limµ→q−N ′ Nµ

in the definition of Q−, which in some cases can be zero as we will discuss below.

4. The degree of the eigenvalues and ‘infinite’ Bethe roots

We start our discussion with the first factor in the eigenvalue (27), the monomial zn∞ which
is related to the fact that some Bethe roots in the root of unity limit vanish or tend to infinity.
Obviously, n∞ �= 0 if and only if the eigenvalue of the auxiliary matrices vanishes at the
origin. Another obvious observation is that by construction of the auxiliary matrices it follows
that

deg Qµ = n∞ + n+ + n− + nSN
′ � M. (32)

As it turns out this upper bound is assumed if and only if we have a vanishing monomial
contribution, i.e., n∞ = 0. This can be deduced from the following relation for the auxiliary
matrices [6, 7]:

Qµ(z) = (−zq/µ)MQµ−1(z−1q−2)t (33)

which implies that the coefficients in the power series expansion

Qµ(z) =
M∑

m=0

Q(m)
µ zm (34)

are related via

Q(m)
µ = (−µ)−Mq−M+2m

(
Q

(M−m)

µ−1

)t
. (35)

In particular, setting m = 0 in the above identity we see that the eigenvalue of Qµ is of
degree M whenever Qµ(0) = Q(0)

µ �= 0. At the same time this clearly prevents n∞ �= 0.
The coefficient Q(0)

µ can be easily calculated by noting that the building blocks Lµ(z) of the
auxiliary matrix are lower triangular matrices at z = 0,

Lµ(0) = −πµ(q−h1/2) ⊗ σ +σ− − πµ(qh1/2) ⊗ σ−σ + + (q − q−1)πµ(e1q
−h1/2) ⊗ σ−. (36)
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Thus, the matrix Qµ(0) in quantum space is diagonal with its diagonal elements given by

Qµ(0) = (−)M
Tr
πµ q−h1S

z = (−)M(µq)S
z

N ′−1∑

=0

q2
Sz

. (37)

For the interpretation of this result we distinguish the following cases:

1. When qN ′ = 1, i.e., for primitive roots of unity of odd order, the degree of the polynomial
will only be equal to M in the commensurate sectors 2Sz = 0 mod N . At the same time
this means that there are no infinite Bethe roots, that is n∞ = 0. Consequently, we have

Qµ(0) = Nµ = (−)MNqSz

µSz

, qN ′ = 1, 2Sz = 0 mod N. (38)

2. When qN ′ = −1 we have to distinguish between M even and odd. Let M be even then
Sz takes integer values only and we obtain deg Qµ = M if and only if 2Sz = 0 mod N .
Again we find in these spin-sectors the normalization constant

Qµ(0) = Nµ = N ′qSz

µSz

, qN ′ = −1, M ∈ 2N, 2Sz = 0 mod N. (39)

3. For qN ′ = −1 and M odd, however, the total spin eigenvalue will be constrained to the
set 2Sz ∈ 2Z + 1, preventing the existence of a monomial factor. That is, in this case we
always have deg Qµ = M and n∞ = 0. The normalization constant is therefore

Qµ(0) = Nµ = −qN ′Sz

µSz qN ′Sz − q−N ′Sz

qSz − q−Sz , qN ′ = −1, M ∈ 2N + 1. (40)

5. The TQ-equation

The most important property of the auxiliary matrix is the solution of the following functional
equation with the six-vertex transfer matrix which has been proved to hold for M even and
odd [6]:

T (z)Qµ(z) = (z − 1)MQµq(zq
2) + (zq2 − 1)MQµq−1(zq−2). (41)

From this functional equation and the fact that T (2) does not depend on the free parameter µ

we infer similar to the case M even considered in [7] that

wi(µ) = wiµ
2 and ai(µ) = ai(µ

2N ′
)

implying the following form for the eigenvalues of the transfer matrix:

T (z) = Nµq

Nµ

q2n∞(z − 1)M
Q+(zq2)

Q+(z)
+
Nµq−1

Nµ

q−2n∞(zq2 − 1)M
Q+(zq−2)

Q+(z)
. (42)

Here, the ratios of the normalization constants can only depend on q from which we deduce

Nµq

Nµ

= Nµ

Nµq−1
. (43)

The zeros of the polynomial Q+ are fixed through the ‘Bethe ansatz’ equations,

0 = (1 − ziq
2)Mq−sQ+(ziq

−2) + (1 − zi)
MqsQ+(ziq

2), i = 1, . . . , n+, (44)

with

qs := Nµq

Nµ

q2n∞ = Nµ

Nµq−1
q2n∞ . (45)

We will argue below that this phase factor is determined by the total spin of the eigenstate and
the number of Bethe roots which tend to zero in the root of unity limit.
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5.1. Spin reversal and Bethe roots ‘beyond the equator’

We are now exploring the role of the polynomial factor Pµ. Following the same line of
argument as in [7] we act with the spin-reversal operator from both sides on the TQ-equation
employing the transformation law [6, 7]

RQµ(z)R = Qµ−1(zµ−2)

of the auxiliary matrix. Replacing afterwards µ → µ−1 we obtain the equation

T (z)Qµ(zµ2) = (z − 1)MQµq−1(zµ2) + (zq2 − 1)MQµq(zµ
2). (46)

Since we employed the spin-reversal operator we refer to this identity as the TQ-equation
‘beyond the equator’. The corresponding expression in terms of eigenvalues is deduced to be

T (z) = Nµq−1

Nµ

(z − 1)M
Pµq−1(zµ2)

Pµ(zµ2)
+
Nµq

Nµ

(zq2 − 1)M
Pµq(zµ

2)

Pµ(zµ2)

= (z − 1)Mq−s Q−(zq2)

Q−(z)
+ (zq2 − 1)Mqs Q−(zq−2)

Q−(z)
. (47)

Note that in comparison with (42) not only the phase factors qs have been inverted but that the
polynomial Q− will in general have a different degree than Q+, i.e., n− �= n+. From (46) we
now obtain the ‘Bethe ansatz equations beyond the equator’,

0 = (1 − wiq
2)MqsQ−(wiq

−2) + (1 − wi)
Mq−sQ−(wiq

2), i = 1, . . . , n−. (48)

This second solution to the TQ-equation, which is related by spin reversal to Q+, will not
always be linear independent as we shall see below. The parameter s entering the phase
factors in the eigenvalue expressions of the transfer matrices changes sign, since we already
saw for particular cases, see (38)–(40), that it is related to the total spin of the corresponding
eigenvectors through the normalization constant. For the general case its value can be
determined by making contact with the fusion hierarchy.

Using the functional equation (9) for the fusion matrices presented in the introduction,
the above results for the transfer matrix are extended to all fusion matrices via induction.
A straightforward calculation yields

T (n)(z) = q±(n+1)sQ±(z)Q±(zq2n)

n∑

=1

q∓2
s(zq2
 − 1)M

Q±(zq2
)Q±(zq2
−2)
. (49)

In the paper [8] it has been argued, using the algebraic Bethe ansatz when q is not a root of
unity, that the parameter s can be identified with

s = 2n0 + Sz mod N ′. (50)

Here, n0 denotes the number of Bethe roots which vanish in the root of unity limit qN → 1.

6. A functional equation relating Q+ and Q−

The final step in the analysis of the spectrum of the auxiliary matrices rests on the following
functional equation, which has been proved for N = 3 in [7],

Qµ(zµ2q2)Qν(z) = (zq2 − 1)MQµνq(zµ
2q2) + qN ′MQµνq−N ′+1(zµ

2q2)T (N ′−1)(zq2). (51)

This equation is a direct consequence of the following decomposition of the tensor product
πµ

w ⊗ πν
1 of evaluation representations:

0 → π
µ′
w′ ↪→ πµ

w ⊗ πν
1 → π

µ′′
w′′ ⊗ π

(N ′−2)
z′ → 0 (52)
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where
w = µνq2, µ′ = µνq, w′ = µq,

µ′′ = µνq−N ′+1, w′′ = µq−N ′+1, z′ = νqN ′+1.
(53)

For the moment assume the functional equation (51) to hold, the derivation of (51) and
(52) is given in appendix A. Let us insert the explicit form of the eigenvalue into (51).
We find
Qµ(zµ2q2)Qν(z)

Qµνq(zµ2q2)

= NµNν

Nµνq

zn∞PB(z)Pµ=1(zq
2)

nS∏
i=1

(1 − zN ′
µ2N ′

/ai(µ
2N ′

))(1 − zN ′
/ai(ν

2N ′
))

(1 − zN ′
µ2N ′

/ai(µ2N ′
ν2N ′

))

= NµνqN ′+1

Nµνq

qN ′MT (N ′−1)(zq2) + (zq2 − 1)M.

Here, we have exploited the fact that the zeros of the factors Pµ, Pν and PµνqN ′+1 , Pµνq only
depend on µ2, ν2 and µ2ν2q2, respectively. The possible complete string contribution PS

contains the various parameters only to the power 2N ′. Note that the last line of the above
equation is independent of the free parameters µ, ν (the ratio of the normalization constants
only depends on q as pointed out earlier). This implies that the zeros ai(µ

2N ′
) are either

independent of µ altogether or only incorporate it as a multiplicative factor, i.e., one has
(exactly as in the case N = 3 proved in [7]) the alternative

ai(µ
2N ′

) = ai or ai(µ
2N ′

) = aiµ
2N ′

. (54)

Hence, there are at most 2nS possible eigenvalues of the auxiliary matrix in a degenerate
eigenspace of the transfer matrix with fixed n∞ and n±. This proves part of the second

conjecture made in [7], see equation (18) with ai ≡ (
zS
i

)N ′
. From the outcome on the

zeros of the complete string contribution one deduces that the factor originating from the PS

polynomials simplifies
nS∏
i=1

(1 − zN ′
µ2N ′

/ai(µ
2N ′

))(1 − zN ′
/ai(ν

2N ′
))

(1 − zN ′
µ2N ′

/ai(µ2N ′
ν2N ′

))
= PS(z

N ′
, µ = 1). (55)

Hence, we can rewrite the functional equation in terms of Q± as follows:

Qµ(zµ2q2)Qν(z)

Qµνq(zµ2q2)
= Nµ

Nµq−N ′+1

q−2n∞Q+(z)Q−(zq2)

= Nµq2N ′+1

Nµq−N ′+1

qN ′MT (N ′−1)(zq2) + (zq2 − 1)M.

Here, we have set ν = q−N ′
in the normalization constants without loss of generality. Invoking

now the earlier stated form of the fusion matrices (49) this identity becomes
Nµ

Nµq−N ′+1

q−2n∞Q+(z)Q−(zq2) = Nµq

Nµq−N ′+1

q−sQ+(z)Q−(zq2)

= Nµq2N ′+1

Nµq−N ′+1

qN ′M±N ′sQ±(z)Q±(zq2)

N ′−1∑

=1

q∓2
s(zq2
+2 − 1)M

Q±(zq2
+2)Q±(zq2
)
+ (zq2 − 1)M.

Setting µ → q−N ′
and solving the last expression for Q± we obtain the result

Q∓(z) = q±(N ′+1)sQ±(z)

N ′∑

=1

q−2
s(zq2
 − 1)M

Q±(zq2
)Q±(zq2
−2)
. (56)
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Hence, the two solutions of the TQ-equation are related to each other by an inversion formula
(provided that Q− �= 0, see the discussion below). This identity is the six-vertex analogue
of the functional equation conjectured by Fabricius and McCoy for Baxter’s (1972) auxiliary
matrix of the eight-vertex model [4, 5]. (We will comment further on this in the conclusion.)
Here, we have proved this functional equation in the six-vertex limit for all roots of unity
and spin-chains of even as well as odd length. Let us investigate the difference between the
solutions Q± depending on the cases when M is even or odd.

Decomposition of the eigenvalue for M even. For spin-chains of even length M = 2m and at
qN ′= ± 1 the sum in (29), which at first sight appears to be a rational function, simplifies due
to the Bethe ansatz equations (44) to a polynomial, i.e., we have for any contour C encircling
the point ziq

−2
′
,

1

2πi

∮
C(ziq−2
′ )

N ′∑

=1

q−2
s(zq2
 − 1)M

Q+(zq2
)Q+(zq2
−2)
dz

= q−2
′s(zi − 1)M

Q+(ziq−2)
∏

j �=i (1 − zi/zj )
+

q−2(
′+2)s(ziq
2 − 1)M

Q+(ziq2)
∏

j �=i (1 − zi/zj )
= 0, 0 < 
′ � N ′.

As a consequence we obtain in general the identifications [7]

lim
µ→q−N ′

Pµ(z) = Q+(z) (57)

and

lim
µ→q−N ′

Nµzn∞PS(z
N ′

, µ2N ′
) = q(N ′+1)s

N ′∑

=1

q−2
s(zq2
 − 1)M

Q+(zq2
)Q+(zq2
−2)
. (58)

We therefore conclude that Q− �= Q− in this case. In fact, one finds numerically that the
solution Q− with M/2 + Sz Bethe roots does not exist. The other important conclusion is
that the result (58) together with (54) enables us to read off the degeneracy of the transfer
matrix eigenvalue corresponding to Q+. According to (54) each zero ai in the complete string
contribution PS is either independent of µ or is multiplied by a factor µ2N ′

showing that
there are 2nS possible eigenvalues of the auxiliary matrices each corresponding to a vector in
the degenerate eigenspace of the transfer matrix. This is in agreement with the observation
[19] that only spin-1/2 representations occur in the tensor products describing the finite-
dimensional representations of the loop algebra. Obviously, if nS = 0 the eigenvalue of the
transfer matrix is non-degenerate up to spin-reversal symmetry.

Decomposition of the eigenvalue for M odd. For M = 2m + 1 odd the above simplification
of the eigenvalue in general also holds true when N odd with the possible exception that the
part (58) of the eigenvalue completely vanishes, we will discuss this case below. For N even,
however, the polynomials Pµ and PB = Q+ differ. Since we have now s ∈ 1

2 Z and qN ′ = −1
the rational function (58) has poles at z = zi with non-vanishing residue,

1

2πi

∮
C(zi )

N ′∑

=1

q−2
s(1 − zq2
)M

Q+(zq2
)Q+(zq2
−2)
dz

= q−2s(ziq
2 − 1)M

Q+(ziq2)
∏

j �=i (1 − zi/zj )
+

q−2N ′s(zi − 1)M

Q+(ziq−2)
∏

j �=i (1 − zi/zj )
�= 0

Therefore, the factor Q+(z) in front of the sum is needed to cancel these poles and the above
factorization (57), (58) does not take place. As a consequence complete strings are absent and



Auxiliary matrices on both sides of the equator 59

there are no additional degeneracies other than spin-reversal symmetry. As argued earlier in
section 4 infinite Bethe roots are absent as well and we must have

Q−(z) = lim
µ→q−N ′

NµPµ(z) = q(N ′+1)Sz

Q+(z)

N ′∑

=1

q−2
Sz

(zq2
 − 1)M

Q+(zq2
)Q+(zq2
−2)
(59)

with the degrees of the polynomials Q± obeying

deg Q− = M − deg Q+ = M

2
+ Sz. (60)

Thus, we obtain a very different picture depending on the length of the spin-chain being odd
or even.

The quantum Wronskian. The difference between the two situations of even and odd spin-
chains is highlighted further by introducing the analogue of (31) for the two different parts of
the auxiliary matrix eigenvalues. This corresponds to the ‘quantum Wronskian’ in [22]. First
note that using (56) we easily obtain

qnsQ+(zq2n)Q−(z) − q−nsQ+(z)Q−(zq2n) = (qN ′s − q−N ′s)T (n)(z). (61)

Upon specializing to n = 1 this relation simplifies to

qsQ+(zq2)Q−(z) − q−sQ+(z)Q−(zq2) = (qN ′s − q−N ′s)(zq2 − 1)M. (62)

Note that the right hand of the above equation always vanishes except for odd spin-chains
and even roots of unity. This signals the linear dependence between Q± for M even and
qN ′ = 1,M odd as described above, compare with (57) and (58).

For M odd and qN ′ = −1 the quantum Wronskian is nonzero and we can identify

Q+ = Q+ and Q− = Nµ=q−N ′Q− = −qN ′Sz − q−N ′Sz

qSz − q−Sz Q−. (63)

Thus, via an explicit construction of diagonalizable Q-operators we have shown existence of
the solutions above and below the equator. Note that the Wronskian implies the Bethe ansatz
equations (44). Namely, we have for each zero zi of Q+ that

qSz Q+(ziq
2)

(ziq2 − 1)M
= qN ′Sz − q−N ′Sz

Q−(zi)
= −qSz Q+(ziq

−2)

(zi − 1)M
. (64)

An analogous relation holds for the zeros wi of Q− leading to the Bethe ansatz equations
beyond the equator (48). Note that (31), respectively (62), contains more information than
each copy of the Bethe ansatz equations by itself, as it relates the zeros zi and wi through the
following sum rules for each 0 � m � M:(

M

m

)
=

∑
k+
=m

qSz−2
e+
k e

−

 − q−Sz−2ke+

k e
−



qSz − q−Sz . (65)

Here we have in light of (63) identified the zeros of Q± with {zi} and {wi} and introduced the
elementary symmetric polynomials

e+
k = ek

(
z−1

1 , . . . , z−1
n+

)
and e−

k = ek

(
w−1

1 , . . . , w−1
M−n+

)
. (66)

Numerically it is by far more feasible to solve this set of M equations, which is quadratic
in the M variables

{
e+
k

} ∪ {e−
k }, rather than the original n+ = M/2 − Sz Bethe ansatz

equations (44) which are of order M in the n+ variables {zi}. We verified for N ′ = 3, 5
up to spin-chains of length M = 11 that the number of solutions of equations (65) matches
the dimension of the respective eigenspaces of the transfer matrix.
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7. Zero eigenvalues when N and M are odd

An additional aspect in which the cases of even and odd spin-chains differ is the occurrence
of zero eigenvalues of the auxiliary matrices. That the auxiliary matrices can have indeed a
non-trivial kernel for odd M has already been remarked upon in [6] where it was noted for
the simple case of the M = 3 spin-chain. As we will see, it is closely connected with the
inversion formula (56) which follows from the functional equation (51) and the existence of
two independent solutions Q± of the TQ-equation.

Eigenstates with a maximum number of Bethe roots. Suppose q is an odd root of unity then, as
discussed above, the rational function (58) becomes a polynomial in z and Pµ(z) = Q+(zµ−2).
The only exception to this scenario is the case when the corresponding eigenstate of the transfer
matrix is a singlet. According to our previous discussion, we therefore must have 2nS = 1,
i.e., the corresponding eigenvalue of the auxiliary matrix cannot contain complete strings. In
the absence of infinite Bethe roots we now argue that this implies (58) vanishes. This can be
deduced in several ways. Suppose the two linear independent solutions Q± to the TQ-equation
exist. Then they have to obey the quantum Wronskian (31). Solving the latter for Q− we
obtain

Q−(z) = q−2Sz Q+(z)Q−(zq2)

Q+(zq2)
+

(
1 − q−2Sz) (1 − zq2)M

Q+(zq2)
. (67)

Iteration of this formula yields after N steps

Q−(z) = q−2NSz Q+(z)Q−(zq2N)

Q+(zq2N)
+

(
q2Sz − 1

)
Q+(z)

N∑

=1

q−2
Sz

(1 − zq2
)M

Q+(zq2
)Q+(zq2
−2)

which upon invoking the root of unity condition qN ′ = qN = 1 gives

N∑

=1

q−2
Sz

(zq2
 − 1)M

Q+(zq2
)Q+(zq2
−2)
= 0. (68)

This fact together with the identification Q+ = Q+ and (56) implies the vanishing of the
corresponding eigenvalue of the auxiliary matrix. This does not mean that the second linear
independent solution Q− does not exist, it simply states that the normalization constant Nµ=1

in the definition (29) of Q− �= Q− is zero. Note also that (68) applies to non-degenerate states
only, which decrease in number as M  N due to the loop algebra symmetry at roots of
unity [19]; see table 1 for examples.

In fact, for N = 3 in the spin-sector Sz = ±1/2 there is only one state with the expected
number of Bethe roots above and below the equator, the ground state. This is in agreement
with the results in [15]. However, our starting point is different from the one in [15]. Instead
of making a conjecture on the explicit form of the ground state of the six-vertex model, we
simply start from the assumption that there exists an eigenstate with m = (M − 1)/2 Bethe
roots in the spin Sz = 1/2 sector. According to (32) complete strings cannot be present and
thus (58) must be a constant. But because of (68) with Q+ = Q+ this constant is vanishing
and we have the difference equation,

(1 − z)MQ+(zq2) + q−1(1 − zq2)MQ+(zq−2) + q−2(1 − zq−2)MQ+(z) = 0. (69)

As our conventions differ from Stroganov’s we review his calculation in appendix B and show
that (69) has a unique solution which can be expressed in terms of hypergeometric functions.
The same holds true for the second linear independent solution Q− which has m + 1 roots.
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Table 1. Shown are the number of ‘maximal’ solutions to the Bethe equations (i.e. n+ = M/2−Sz

Bethe roots above and n− = M − n+ below the equator with Sz = 1/2) over the dimension of the
spin-1/2 sector. The deformation parameter is chosen to be q = exp(2π i/N). For N = 3, 5 it has
been checked that the number of ‘maximal Bethe states’ matches the dimension of the kernel of
the auxiliary matrix.

M

3 5 7 9

N = 3 1/3 1/10 1/35 1/126
N = 5 3/3 8/10 21/35 55/126
N = 7 3/3 10/10 33/35 108/126

In the case of general N ∈ 2N + 1 similar difference equations follow. Let M = 2m + 1,

then the eigenvalues of singlet states with n∞ = nS = 0 in the spin Sz = 1/2 sector with
N � 3 satisfy

N∑

=1

q∓
fN(zq2
) = 0, fN(z) = (1 − z)M
N−2∏

=1

Q±(zq2
)

implying the following sum rules in terms of the elementary symmetric polynomials (66) in
the m Bethe roots above and the m + 1 Bethe roots below the equator:

0 =
∑

k+l=n

(
M

k

) ∑
k1+···+kN−2=l

N−2∏
j=1

q−2jkj e±
kj

. (70)

Here, the integer n takes all values in the range

0 < n = N ± 1

2
mod N � N

M ∓ 1

2
± 1 (71)

and the different summation variables run over the intervals,

0 � k � M, 0 � kj � M ∓ 1

2
. (72)

In general, the set of equations (70) is of order N − 2 and only for N = 3 becomes linear
in the variables

{
e±
k

}
, where the equations are particularly simple to solve; see appendix B.

Nevertheless, these sum rules are still an advantage over the Bethe ansatz equations which are
of order M.

8. Conclusions

Let us summarize the new results obtained for the six-vertex model at roots of unity. First of all
the discussion has been extended from even to odd spin-chains exploiting that the construction
procedure for the auxiliary matrices in [6] does not have the same limitations as the one in
Baxter’s book [20]. This allowed us to reveal the major differences in the spectrum of the
six-vertex model at roots of unity between these two cases.

1. When the length of the spin-chain is even there are degeneracies in the spectrum of the
transfer matrix for all roots of unity. These degeneracies are reflected in the spectrum
of the auxiliary matrices through the occurrence of ‘complete string factors’, see (58) in
the text. The number of these strings, i.e., the degree nS of the polynomial PS in (27),
determines the degeneracy of the corresponding eigenspace of the transfer matrix to be
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2nS . This is in accordance with the observations made in [19]. In order to arrive at this
result we made use of the crucial functional equation (51) which severely restricts the
dependence of the complete string factors on the free parameter µ entering the definition
of the auxiliary matrix (19). In addition, we employed (51) to prove the identity (58) which
states that the string factors are determined (up to their dependence on the aforementioned
parameter µ) by the solution to the Bethe ansatz equations and the number of infinite
Bethe roots which fix the eigenvalue of the transfer matrix. These results had previously
been proved for N = 3 only and conjectured to hold true for N > 3 [7]. Moreover,
we deduced that the Bethe roots appear twice in the eigenvalue of the auxiliary matrices,
once in the factor PB = Q+ and once multiplied by the factor µ2 in the factor Pµ of the
eigenvalue (27). A second linear independent solution to the TQ-equation was not found.

2. For spin-chains with an odd number of sites the novel feature was the appearance of such
a second linear independent solution to the TQ-equation below the equator.

For primitive roots of unity of odd order this second solution does not exist for all
eigenstates of the transfer matrix, but only for those which are singlets and have no
infinite roots. For these eigenstates of the transfer matrix we have shown that due to
the functional equation (51) the corresponding eigenvalues of the auxiliary matrices must
vanish, see equation (68) in the text. The number of these states, i.e., the dimension of the
kernel of the auxiliary matrix, will become smaller as the length of the spin-chain starts
to exceed the order of the root of unity, i.e., M  N . (For N = 3 we in particular saw
that there is only one such singlet state for all odd M and it corresponds to Stroganov’s
solutions of the TQ-equation for the ground state of the XXZ spin-chain at � = −1/2
[15].) This decrease in number can be understood in terms of the loop algebra symmetry
[19] of the six-vertex transfer matrix. As the length of the spin-chain M grows more
and more of the transfer matrix’ eigenstates organize into larger and larger multiplets
spanning the irreducible representations. Similar to the case of even spin-chains these
degenerate states within the multiplets give rise to complete strings in the eigenvalues of
the auxiliary matrices with the same formula 2nS yielding the multiplicity of the transfer
matrix eigenvalue.

For primitive roots of unity of even order the solution below the equator always
exists, here, however, the eigenvalues of the transfer matrix do not vanish. We showed
the absence of infinite Bethe roots as well as complete strings, leaving at most a double
degeneracy in the spectrum of the transfer matrix due to spin-reversal symmetry. The
latter is broken by the auxiliary matrices and we used this fact to identify PB = Q+ and
Pµ = Q− with the solutions to the TQ-equation above and below the equator, respectively.
The explicit construction of the Q-matrices in [6], see the definition (19) in this paper,
guarantees therefore the existence of these two solutions, a fact implicitly assumed in [13]
for the case of ‘generic q’. What is still lacking at the moment is an understanding of the
physical significance behind the existence of two linear independent solutions opposed to
the case when there is only one. We hope to address this question in a future publication.

In this paper we have focused on the case when q is a root of unity to discuss the spectra
of the auxiliary matrices constructed in [6]. But as mentioned in the introduction analogous
Q-operators have also been constructed when q is not a root of unity [24]. Their spectra
together with the resolution of certain convergence problems originating from an infinite-
dimensional auxiliary space have been discussed in [8]. As explained therein one in general
needs to impose quasi-periodic boundary conditions on the lattice in order to obtain a well-
defined auxiliary matrix. For instance, in the critical regime |q| = 1 the twist parameter λ has
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to be of modulus smaller than 1, |λ| < 1, to guarantee absolute convergence [8]. This twist
parameter enters the definition of the fusion matrices (7) as

T (n+1)(zq−n−1) = Tr
0

λπ(n)(h1)⊗1L
(n+1)
0M (zqn+1) · · · L(n+1)

01 (zq−n−1) (73)

and modifies the Wronskian (31) in the following manner:

λ−1qSzQ+(zq2)Q−(z) − λq−SzQ+(z)Q−(zq2) = (
λ−1qSz − λq−Sz)

(1 − zq2)M. (74)

Numerical computations show that both solutions Q± exist for M even and odd. Proceeding
similarly as we did for the case of odd roots of unity we can iteratively solve this equation for,
say Q+, to obtain

Q−(z) = lim
n→∞ λ2nq−2nSz Q+(z)Q−(zq2n)

Q+(zq2n)
+

(
1 − λ2q−2Sz)Q+(z)

∞∑

=0

λ2
q−2
Sz

(1 − zq2
+2)M

Q+(zq2
+2)Q+(zq2
)
.

In the limit n → ∞ the first term on the right-hand side tends to zero as |λ| < 1 and |q| = 1.
The above expression then matches the results obtained for the eigenvalues of the Q-operator
from the algebraic Bethe ansatz, see equations (75)–(78) in [8],

Q�(z; r0, r1) = (−1)Mr−Sz

0

(
1 − λ2q−2Sz)

Q+(zr1)Q
−(z).

Here, up to some trivial normalization factors, we can identify Q± ∝ Q±. Thus, similar as
in the root-of-unity case the spectrum of the auxiliary matrices [24, 8] when q is not a root
of unity contains both solutions to the TQ-equation, the one above and the one below the
equator. Moreover, these two solutions are related by the analogue of formula (56) where the
summation extends now over an infinite interval.

In the text we commented on a similarity between relation (56) and a eight-vertex
functional equation conjectured by Fabricius and McCoy [4, 5] for Baxter’s (1972) auxiliary
matrix Q8v [2] at coupling values η = mK/N ′ (see equation (3.10) in [4] or (3.1) in [5]),

e−iπuM/2KQ8v(u − iK ′) = AQ8v(u)

N ′−1∑

=0

hM(u − (2
 + 1)K/N ′)
Q8v(u − 2
K/N ′)Q8v(u − (2
 + 1)K/N ′)

. (75)

Here, h(u) = θ4(0)θ1(πu/2K)θ4(πu/2K) in terms of Jacobi’s theta-functions with modular
parameter p = exp(−πK ′/K). We have made the replacements L → N ′ (the order of the
root of unity) andN → M (the length of the spin-chain) in the notation of [4, 5]. For general
N ′ the explicit form of the constant A is as yet unknown. This functional equation has been
proved for the free fermion case when M is even and numerically verified for coupling values
corresponding to roots of unity of order 3, see the comment after (3.1) in [5].

If one identifies Q8v(u − iK ′) with Q−(euq−1) and Q8v(u) with Q+(euq−1) in the six-
vertex limit the similarity becomes apparent. This is further supported by the observation that
the transformation u → u − iK ′ corresponds to spin reversal in the eight-vertex Boltzmann
weights4. It is tempting to speculate on further identities such as the elliptic analogue of
relation (62) for instance. While these identifications can be conjectured and numerically
investigated on the level of eigenvalues, the analogous construction of the eight-vertex
Q-matrices corresponding to (19), which would allow one to prove existence, is a more
complicated problem.

4 The author is grateful to Barry McCoy for discussions on this point.
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Appendix A. Derivation of the functional equation

As mentioned earlier the proof of the functional equation (51) employs representation theory
and is deduced from the following non-split exact sequence describing the decomposition of
the tensor product πµ

w ⊗ πν
1 ,

0 → π
µ′
w′

ı
↪→ πµ

w ⊗ πν
1

τ→ π
µ′′
w′′ ⊗ π

(N ′−2)
z′ → 0. (A.1)

The various parameters appearing in the representations are not all independent but satisfy the
relations

w = µνq2, µ′ = µνq, w′ = µq,

µ′′ = µνq−N ′+1, w′′ = µqN ′+1, z′ = νqN ′+1.
(A.2)

Note that we have set the second evaluation parameter in the tensor product πµ
w ⊗ πν

1 equal
to 1. The general case πµ

w ⊗ πν
u is obtained by simply replacing w → wu,w′ → w′u and

w′′ → w′′u, z′ → z′u. The line of argument is analogous to the one applied in [6] to derive
the TQ-equation via (24) and the proof of (51) in [7] for N = 3, whence we will be rather
brief in presenting the various steps of the proof.

The inclusion. First we determine the subrepresentation π
µ′
w′ contained in the tensor product

πµ
w ⊗πν

1 when w is tuned to the special value given in (52). This will yield the first term on the

right-hand side of (51). The corresponding inclusion map ı : π
µ′
w′ ↪→ πµ

w ⊗ πν
1 is determined

by identifying the lowest weight vectors in both representations,

π
µ′
w′ � |0〉 ı

↪→ |0〉 ⊗ |0〉 ∈ πµ
w ⊗ πν

1 . (A.3)

The remaining relations for the rest of the vectors in the included subrepresentation is obtained
by successive action of the quantum group generators via the formula

π
µ′
w′ (x)|0〉 ı

↪→ (πµ
w ⊗ πν

1 )�(x)|0〉 ⊗ |0〉.
The above formula suffices to compute the various parameters. For instance, the parameter
µ′ in (A.2) is computed from the action of the Cartan element x = qh1 . The evaluation
parameters w,w′ are deduced as follows. First act with f1 on the lowest weight vector to
obtain

π
µ′
w′ (f1)|0〉 =

ı

|1〉 ↪→ (πµ
w ⊗ πν

1 )�(f1)|0〉 ⊗ |0〉 = νq|1〉 ⊗ |0〉 + |0〉 ⊗ |1〉.
Alternatively, one obtains via the generator e0,

π
µ′
w′ (e0)|0〉 = w′ ı

|1〉 ↪→ (πµ
w ⊗ πν

1 )�(e0)|0〉 ⊗ |0〉 = w|1〉 ⊗ |0〉 + µq|0〉 ⊗ |1〉.
Comparing both results leads to the stated values of w,w′ in (A.2). The scalar coefficient in
front of the first term on the right-hand side of the functional equation (51) is obtained from
the identity

L
µ

13(zµq2)Lν
23(z/ν)(ı ⊗ 1) = (zq2 − 1)(ı ⊗ 1)Lµνq(zµq/ν) (A.4)

which can be easily verified by acting on the lowest weight vector.
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The projection. In order to compute the second term of the functional equation (51) we need to
determine the representation in the quotient space πµ

w ⊗ πν
1

/
π

µ′
w′ which is projected out by the

map τ . One proceeds in an analogous manner. The projection map τ is fixed by identifying
this time the highest weight vector in both representation spaces,

πµ
w ⊗ πν

1 � |N ′ − 1〉 ⊗ |N ′ − 1〉 τ→ |N ′ − 1〉 ⊗ |N ′ − 2〉 ∈ π
µ′′
w′′ ⊗ π

(N ′−2)
z′ . (A.5)

Again the value of µ′′ can be inferred from the action of the Cartan element x = qh1 via the
formula

(πµ
w ⊗ πν

1 )�(x)|N ′ − 1〉 ⊗ |N ′ − 1〉 τ→ (π
µ′′
w′′ ⊗ π

(N ′−2)
z′ )�(x)|N ′ − 1〉 ⊗ |N ′ − 2〉.

Setting x = f1f0 and x = e0e1 one obtains the desired evaluation parameters w′′ and z′

detailed in (A.2). For instance, from the left-hand side of the above equation one obtains

(q − q−1)2
(
πµ

w ⊗ πν
1

)
�(f1f0)|N ′ − 1〉 ⊗ |N ′ − 1〉

=
{
µ + µ−1 − µq−2 − µ−1q2

w
+ ν + ν−1 − νq−2 − ν−1q2

}
|N ′ − 1〉 ⊗ |N ′ − 1〉

while the right-hand side is computed to

(q − q−1)2
(
π

µ′′
w′′ ⊗ π

(N ′−2)
z′

)
�(f1f0)|N ′ − 1〉 ⊗ |N ′ − 2〉

= µνq−N ′+1 + (µν)−1qN ′−1 − µνq−N ′−1 − (µν)−1qN ′+1

w′′ |N ′ − 1〉 ⊗ |N ′ − 2〉

+
(q − q−1)2[N ′ − 2]q

z′ |N ′ − 1〉 ⊗ |N ′ − 2〉.
Matching the coefficients in both results yields the stated expressions for the parameters. In
the case of the quotient projection there is only a trivial additional scalar factor as we have the
equality

(τ ⊗ 1)L
µ

13(zµq2)Lν
23(z/ν) = qN ′

L
µνq−N ′+1

13 (zµq−N ′+1/ν)L
(N ′−2)
23 (zqN ′+1)(τ ⊗ 1). (A.6)

Again this is most easily calculated by acting with both sides of the equation on the highest
weight vector. This completes the proof of the functional equation.

Appendix B. Stroganov’s solution revisited

As explained in the text the assumption that there exists an eigenstate with m = (M − 1)/2
Bethe roots in the spin Sz = 1/2 sector implies via (32), (58) and (68) with Q+ = Q+ that we
have the difference equation,

(1 − z)MQ+(zq2) + q−1(1 − zq2)MQ+(zq−2) + q−2(1 − zq−2)MQ+(z) = 0. (B.1)

Expanding

(1 − z)MQ+(zq2) = 1 +
3m+1∑
n=1

cnz
n

we infer that the difference equation implies

cn = 0 if n = 2 mod 3.

The remaining coefficients can be determined from the fact that (1 − z)MQ+(zq2) has an
M-fold zero at z = 1. Applying the method of Lagrange interpolating polynomials, similar as
it has been done in [28, 15], one finds the ratios
c3n+3

c3n

= (n − m)(n − m − 1/3)

(n + 1)(n + 2/3)
and

c3n+4

c3n+1
= (n − m)(n + 1/3 − m)

(n + 1)(n + 4/3)
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together with

c0 = 1 and c1 = −(4/3)m/(2/3)m.

Here, (x)m is the Pochhammer symbol. From the ratios of the coefficients we infer that there
is a unique solution which can be expressed in terms of hypergeometric functions

(1 − z)MQ+(zq2) = 2F1
(−m,−m − 1

3 , 2
3 ; z3) −

(
4
3

)
m(

2
3

)
m

z 2F1
(

1
3 − m,−m, 4

3 ; z3). (B.2)

Note that this solution is not simply obtained by multiplying Stroganov’s solution (11) in [15]
with an exponential factor. This is due to the fact that we solved the difference equation (69)
in terms of polynomials which are regular at origin, while Stroganov’s solution applies to
Laurent series.

Second solution. Besides the solution for the Bethe polynomial we just obtained, there is a
second solution ‘beyond the equator’ as it possesses m + 1 roots. Set

(1 − z)MQ−(zq2) = 1 +
3m+2∑
n=1

c′
nz

n

then it obeys the difference equation with Sz = −1/2, i.e.,

(1 − z)MQ−(zq2) + q(1 − zq2)MQ−(zq−2) + q2(1 − zq−2)MQ−(z) = 0.

This implies for the coefficients

c′
n = 0 if n = 1 mod 3.

As before the solution to this set of equations can be expressed in terms of hypergeometric
functions,

(1 − z)MQ−(zq2) = 2F1
(−m,−m − 2

3 , 1
3 ; z3

) −
(

5
3

)
m(

1
3

)
m

z2
2F1

(
2
3 − m,−m, 5

3 ; z3
)
. (B.3)

Ground-state eigenvalue. From the difference equation it follows that the eigenvalue of the
transfer matrix is given by

T (z)PB = q± 1
2 (z − 1)M

Q±(zq2)

Q±(z)
+ q∓ 1

2 (zq2 − 1)M
Q±(zq−12)

Q±(z)
= (zq−2 − 1)M

which matches the conjecture [16–18] employed in [15]. The corresponding ground-state
eigenvalue of the Hamiltonian is given by HXXZ = −M .
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